It is well-known that each statistic in the family of power divergence statistics, across $n$ trials and $r$ classifications with index parameter $\lambda\in\mathbb{R}$ (the Pearson, likelihood ratio and Freeman-Tukey statistics correspond to $\lambda=1,0,-1/2$, respectively) is asymptotically chi-square distributed as the sample size tends to infinity. In this paper, we obtain explicit bounds on this distributional approximation, measured using smooth test functions, that hold for a given finite sample $n$, and all index parameters ($\lambda>-1$) for which such finite sample bounds are meaningful. We obtain bounds that are of the optimal order $n^{-1}$. The dependence of our bounds on the index parameter $\lambda$ and the cell classification probabilities is also optimal, and the dependence on the number of cells is also respectable. Our bounds generalise, complement and improve on recent results from the literature.
翻译:众所周知,当抽样大小往往具有无限性时,权力差异系列统计的每一项统计,包括美元试验和美元分类(Pearson, 概率比率和Freeman-Tukey统计数据分别对应$\lambda=1,0,-1/2美元),都是零星分布的。在本文中,我们获得了这种分布式近似线的清晰界限,通过光滑测试功能测量,为一定的有限样本保留了$n,以及所有指数参数(lambda>-1美元),这些参数具有一定的样本界限。我们获得了最优顺序的界限 $n ⁇ -1美元。我们的界限对指数参数 $\bda$和细胞分类概率的依赖性也是最佳的,对细胞数量的依赖也是可尊重的。我们的界限是,我们对文献的最新结果进行了概括、补充和改进。