We study efficient preprocessing for the undirected Feedback Vertex Set problem, a fundamental problem in graph theory which asks for a minimum-sized vertex set whose removal yields an acyclic graph. More precisely, we aim to determine for which parameterizations this problem admits a polynomial kernel. While a characterization is known for the related Vertex Cover problem based on the recently introduced notion of bridge-depth, it remained an open problem whether this could be generalized to Feedback Vertex Set. The answer turns out to be negative; the existence of polynomial kernels for structural parameterizations for Feedback Vertex Set is governed by the elimination distance to a forest. Under the standard assumption that NP is not a subset of coNP/poly, we prove that for any minor-closed graph class $\mathcal G$, Feedback Vertex Set parameterized by the size of a modulator to $\mathcal G$ has a polynomial kernel if and only if $\mathcal G$ has bounded elimination distance to a forest. This captures and generalizes all existing kernels for structural parameterizations of the Feedback Vertex Set problem.
翻译:我们研究无方向反馈 Vertex Set 问题的高效预处理前处理问题,这是图形理论中的一个根本问题,它要求一个最小尺寸的顶顶点设置,其去除产生一个环形图。更准确地说,我们的目标是确定这一问题的参数化为哪个参数性内核。虽然根据最近引入的桥深概念,对相关的Vertex 封面问题进行了已知的特征化,但对于与此相关的Vertex 封面问题,根据最近引入的桥深概念,它仍然是一个尚未解决的问题。答案是否定的;对于反馈Vertex Set 来说,一个最小尺寸的顶点的顶点内核内核存在一个最小尺寸的顶点,而对于反馈Vertex 设置的结构参数化而言,只有美元/mathcal G$ 的内核内核离森林的距离由消除的距离来调节。根据NP不是 CoNP/poly 的子子子集的标准假设,我们证明对于任何小封闭的图形类的 $\ math G$, 反馈 Vertex 设置 参数化是一个尚未解决的问题。