Establishing cause-effect relationships from observational data often relies on untestable assumptions. It is crucial to know whether, and to what extent, the conclusions drawn from non-experimental studies are robust to potential unmeasured confounding. In this paper, we focus on the average causal effect (ACE) as our target of inference. We build on the work of Franks et al. (2019)and Robins (2000) by specifying non-identified sensitivity parameters that govern a contrast between the conditional (on measured covariates) distributions of the outcome under treatment (control) between treated and untreated individuals. We use semiparametric theory to derive the non-parametric efficient influence function of the ACE, for fixed sensitivity parameters. We use this influence function to construct a one-step bias-corrected estimator of the ACE. Our estimator depends on semiparametric models for the distribution of the observed data; importantly, these models do not impose any restrictions on the values of sensitivity analysis parameters. We establish sufficient conditions ensuring that our estimator has root-n asymptotics. We use our methodology to evaluate the causal effect of smoking during pregnancy on birth weight. We also evaluate the performance of estimation procedure in a simulation study.
翻译:从观察数据中建立因果关系往往依赖无法检验的假设。关键是要知道从非实验性研究得出的结论是否以及在多大程度上有力,以潜在无法测量的混乱。在本文件中,我们侧重于平均因果关系(ACE),作为我们推断的目标。我们以Franks et al. (2019年)和Robins (2000) 的工作为基础,具体指明关于受治疗者与未治疗者之间在治疗(控制)中的结果的有条件(测量的共变)分布之间的对比的未确定敏感度参数。我们使用半对称理论来得出ACE的非参数有效影响功能,作为固定的敏感度参数。我们使用这种影响功能来构建一个一步的偏差修正估计值。我们的估计值取决于分配观察到的数据的半偏差模型;重要的是,这些模型不对敏感度分析参数的价值施加任何限制。我们建立了充分的条件,确保我们的估量器有根位值。我们用这种方法来评估孕期期间的因果关系。我们用模拟方法来评估怀孕期间的因果关系。