We present TaskSet, a dataset of tasks for use in training and evaluating optimizers. TaskSet is unique in its size and diversity, containing over a thousand tasks ranging from image classification with fully connected or convolutional neural networks, to variational autoencoders, to non-volume preserving flows on a variety of datasets. As an example application of such a dataset we explore meta-learning an ordered list of hyperparameters to try sequentially. By learning this hyperparameter list from data generated using TaskSet we achieve large speedups in sample efficiency over random search. Next we use the diversity of the TaskSet and our method for learning hyperparameter lists to empirically explore the generalization of these lists to new optimization tasks in a variety of settings including ImageNet classification with Resnet50 and LM1B language modeling with transformers. As part of this work we have opensourced code for all tasks, as well as ~29 million training curves for these problems and the corresponding hyperparameters.
翻译:我们展示了用于培训和评估优化器的任务数据集TaxSet。TlexSet在规模和多样性上是独一无二的,包含一千多项任务,从与完全连接或进化神经网络的图像分类,到变式自动代数,到各种数据集的非量保存流。举例来说,我们对这种数据集的应用进行元学研究,以便从使用TlexSet生成的数据中获取一份定购的超参数列表,以便按顺序进行试验。通过从这个超参数列表中学习,我们通过随机搜索在样本效率方面实现大型超速。接下来,我们利用TlexSet的多样性和我们学习超参数列表的方法,实证性地探索这些列表的通用性,以便在各种环境中执行新的优化任务,包括Resnet50的图像网络分类和与变压器的LM1B语言模型。作为这项工作的一部分,我们为所有任务打开了源代码,并为这些问题和相应的超度参数提供了~2 900万个培训曲线。