Data interpolation is a fundamental step in any seismic processing workflow. Among machine learning techniques recently proposed to solve data interpolation as an inverse problem, Deep Prior paradigm aims at employing a convolutional neural network to capture priors on the data in order to regularize the inversion. However, this technique lacks of reconstruction precision when interpolating highly decimated data due to the presence of aliasing. In this work, we propose to improve Deep Prior inversion by adding a directional Laplacian as regularization term to the problem. This regularizer drives the optimization towards solutions that honor the slopes estimated from the interpolated data low frequencies. We provide some numerical examples to showcase the methodology devised in this manuscript, showing that our results are less prone to aliasing also in presence of noisy and corrupted data.
翻译:数据内插是任何地震处理工作流程中的一个基本步骤。在最近提出的解决数据内插这一反问题的机器学习技术中,Deep Prior范式的目的是利用一个革命性神经网络来捕捉数据上的先锋,以规范数据反转。然而,由于存在别名,这种技术在将大量消耗的数据内插时缺乏重建精确性。在这项工作中,我们建议通过在问题中添加一个方向性拉平板词来改进深层前向反向转换。这个常规化器推动优化,以找到能满足从内插数据低频率中估计的斜坡的解决方案。我们提供了一些数字例子来展示手稿中设计的方法,表明我们的结果在出现吵闹和腐败的数据时也不太容易被假化。