Channel hopping provides a defense mechanism against jamming attacks in large scale \ac{iot} networks.} However, a sufficiently powerful attacker may be able to learn the channel hopping pattern and efficiently predict the channel to jam. In this paper, we present FOLPETTI, a MAB-based attack to dynamically follow the victim's channel selection in real-time. Compared to previous attacks implemented via DRL, FOLPETTI does not require recurrent training phases to capture the victim's behavior, allowing hence a continuous attack. We assess the validity of FOLPETTI by implementing it to launch a jamming attack. We evaluate its performance against a victim performing random channel selection and a victim implementing a MAB defence strategy. We assume that the victim detects an attack when more than $20\%$ of the transmitted packets are not received, therefore this represents the limit for the attack to be stealthy. In this scenario, FOLPETTI achieves a $15\%$ success rate for the victim's random channel selection strategy, close to the $17.5\%$ obtained with a genie-aided approach. Conversely, the DRL-based approach reaches a success rate of $12.5\%$, which is $5.5\%$ less than FOLPETTI. We also confirm the results by confronting FOLPETTI with a MAB based channel hopping method. Finally, we show that FOLPETTI creates an additional energy demand independently from its success rate, therefore decreasing the lifetime of IoT devices.


翻译:然而,一个足够强大的攻击者也许能够了解频道选择模式,并有效地预测干扰的渠道。在本文中,我们介绍FOLPETTI, 一种以MAB为基础的攻击,以动态方式实时跟踪受害者选择频道的情况。与以前通过DRL实施的攻击相比,FOLPETTI并不要求经常的培训阶段来捕捉受害者的行为,从而允许持续攻击。我们通过实施干扰攻击来评估FOLPETTI的有效性。我们评估它对于进行随机频道选择的受害者和采用MAB防御战略的受害者的表现。我们假设受害者在没有收到20美元以上所传送的包裹时会侦测攻击,因此这是袭击隐蔽的限度。在这种情况下,FOLPETTI的随机选择策略获得了15,000美元的成功率,接近于17.5美元,因此我们以Genie-LTTI获得的频率为基, 也显示FPEFL5的成功率。

0
下载
关闭预览

相关内容

Explanation:无线网。 Publisher:Springer。 SIT: http://dblp.uni-trier.de/db/journals/winet/
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
专知会员服务
44+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Attacking (and defending) the Maritime Radar System
Arxiv
0+阅读 · 2022年7月12日
Arxiv
0+阅读 · 2022年7月11日
Arxiv
12+阅读 · 2020年12月10日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员