The Boris algorithm, a closely related variational integrator and a newly proposed filtered variational integrator are studied when they are used to numerically integrate the equations of motion of a charged particle in a non-uniform strong magnetic field, taking step sizes that are much larger than the period of the Larmor rotations. For the Boris algorithm and the standard (unfiltered) variational integrator, satisfactory behaviour is only obtained when the component of the initial velocity orthogonal to the magnetic field is filtered out. The particle motion shows varying behaviour over multiple time scales: fast Larmor rotation, guiding centre motion, slow perpendicular drift, near-conservation of the magnetic moment over very long times and conservation of energy for all times. Using modulated Fourier expansions of the exact and numerical solutions, it is analysed to which extent this behaviour is reproduced by the three numerical integrators used with large step sizes.
翻译:鲍里斯算法、 一个密切相关的变异集成器和一个新提议的过滤式变异集成器, 当它们被用于将充电粒子运动的方程式在非统一强磁场中进行数字整合时, 使用比拉莫尔旋转期大得多的步数大小。 对于鲍里斯算法和标准( 未过滤的)变异集成器, 只有当初始速度正方形到磁场的组件被过滤出来时, 才能得到令人满意的行为。 粒子运动显示多个时间尺度的不同行为: 快速拉莫尔旋转、 引导中心运动、 慢视距漂移、 远近观察磁时刻的磁性时刻, 以及所有时间的节能 。 对于波里斯算法和标准( 不受过滤的) 变异集体, 它使用精确和数字解决方案的调制的 Fourier 扩张, 分析使用大步数大小的三种数字集成器复制了多少次的行为。