In this study, we propose a digital over-the-air computation (OAC) scheme for achieving continuous-valued (analog) aggregation for federated edge learning (FEEL). We show that the average of a set of real-valued parameters can be calculated approximately by using the average of the corresponding numerals, where the numerals are obtained based on a balanced number system. By exploiting this key property, the proposed scheme encodes the local stochastic gradients into a set of numerals. Next, it determines the positions of the activated orthogonal frequency division multiplexing (OFDM) subcarriers by using the values of the numerals. To eliminate the need for precise sample-level time synchronization, channel estimation overhead, and channel inversion, the proposed scheme also uses a non-coherent receiver at the edge server (ES) and does not utilize a pre-equalization at the edge devices (EDs). We theoretically analyze the MSE performance of the proposed scheme and the convergence rate for a non-convex loss function. To improve the test accuracy of FEEL with the proposed scheme, we introduce the concept of adaptive absolute maximum (AAM). Our numerical results show that when the proposed scheme is used with AAM for FEEL, the test accuracy can reach up to 98% for heterogeneous data distribution.
翻译:本文提出了一种数字无线计算方案,用于实现联邦边缘学习(FEEL)的连续值(模拟)聚合。我们展示了可以使用对应数字的平均值来近似计算一组实值参数的平均值。而数字则是根据平衡进位制系统得到的。通过利用这个关键属性,该方案将本地随机梯度编码为一组数字。接下来,利用数字的值,方案确定了活动正交频分复用(OFDM)子载波的位置。为了消除需要精确的样本级时间同步、信道估计开销和信道反演的需求,所提出的方案在边缘服务器(ES)上使用非相干接收器,而边缘设备(ED)不使用前均衡。我们在理论上分析了所提出方案的MSE性能,以及对于非凸损失函数的收敛速度。为了提高使用该方案的FEEL的测试准确性,我们引入自适应绝对最大值(AAM)的概念。我们的数值结果表明,当该方案与AAM一起用于FEEL时,即使在数据分布异构情况下,测试准确率也可达到98%。