To achieve the more significant passive beamforming gain in the double-intelligent reflecting surface (IRS) aided system over the conventional single-IRS counterpart, channel state information (CSI) is indispensable in practice but also more challenging to acquire, due to the presence of not only the single- but also double-reflection links that are intricately coupled and also entail more channel coefficients for estimation. In this paper, we propose a new and efficient channel estimation scheme for the double-IRS aided multi-user multiple-input multiple-output (MIMO) communication system to resolve the cascaded CSI of both its single- and double-reflection links. First, for the single-user case, the single- and double-reflection channels are efficiently estimated at the multi-antenna base station (BS) with both the IRSs turned ON (for maximal signal reflection), by exploiting the fact that their cascaded channel coefficients are scaled versions of their superimposed lower-dimensional CSI. Then, the proposed channel estimation scheme is extended to the multi-user case, where given an arbitrary user's cascaded channel (estimated as in the single-user case), the other users' cascaded channels can also be expressed as lower-dimensional scaled versions of it and thus efficiently estimated at the BS. Simulation results verify the effectiveness of the proposed channel estimation scheme and joint training reflection design for double IRSs, as compared to various benchmark schemes.


翻译:为了在常规单一IRS对应方的双智能反映表面(IRS)辅助系统上实现更显著的被动波形增益,频道国家信息(CSI)在实践上是不可或缺的,而且由于不仅存在单一和双反映联系,而且存在错综复杂的双反映联系,并需要更多渠道系数来估计,因此获取渠道国家信息(CSI)对于在常规单一和双反映连接的常规单一-IRS对应方的双智能反映表面(IRS)辅助系统(IRS)辅助的双用户多输入多输出多输出(MIIMO)通信系统来说,实现更显著的被动波形增益。 本文中,我们提出一个新的高效的频道估计机制,即双端IRS辅助多用户多投入多输出多输出(MIIMO)通信系统,以解决其单级和双版本重复反映相联的连锁 CSI系统(MI)的连锁CSI(CSI)通信系统。 首先,就单一用户案例而言,单级和双版本的重复反映化计划,单级和双版本的渠道的渠道(作为B级版本的任意版本的版本的版本的版本,对用户的双版的模拟版本,也作为双版的模拟版本的版本的版本的版本的版本的版本),对用户进行任意性版本的模拟的模拟的模拟分析。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
11+阅读 · 2019年4月15日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Scale-Aware Trident Networks for Object Detection
Arxiv
4+阅读 · 2019年1月7日
Arxiv
5+阅读 · 2018年5月16日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员