Training machine learning models with the only accuracy as a final goal may promote prejudices and discriminatory behaviors embedded in the data. One solution is to learn latent representations that fulfill specific fairness metrics. Different types of learning methods are employed to map data into the fair representational space. The main purpose is to learn a latent representation of data that scores well on a fairness metric while maintaining the usability for the downstream task. In this paper, we propose a new fair representation learning approach that leverages different levels of representation of data to tighten the fairness bounds of the learned representation. Our results show that stacking different auto-encoders and enforcing fairness at different latent spaces result in an improvement of fairness compared to other existing approaches.
翻译:作为最终目标的唯一准确性,培训机器学习模式可能助长数据中所含的偏见和歧视性行为。一个解决办法是学习符合具体公平度量度的潜在代表形式。使用不同类型的学习方法将数据映射到公平的代表空间。主要目的是了解在公平度量度上得分高的数据的潜在代表形式,同时保持下游任务的可用性。在本文件中,我们提出一个新的公平度度量学习方法,利用不同水平的数据代表形式来收紧所学的代表性的公平性界限。我们的结果显示,在不同的潜在空间堆叠不同的自动演算器和实行公平性,与现有的其他方法相比,能够改善公平性。