We consider the Multi-Armed Bandit (MAB) problem, where an agent sequentially chooses actions and observes rewards for the actions it took. While the majority of algorithms try to minimize the regret, i.e., the cumulative difference between the reward of the best action and the agent's action, this criterion might lead to undesirable results. For example, in large problems, or when the interaction with the environment is brief, finding an optimal arm is infeasible, and regret-minimizing algorithms tend to over-explore. To overcome this issue, algorithms for such settings should instead focus on playing near-optimal arms. To this end, we suggest a new, more lenient, regret criterion that ignores suboptimality gaps smaller than some $\epsilon$. We then present a variant of the Thompson Sampling (TS) algorithm, called $\epsilon$-TS, and prove its asymptotic optimality in terms of the lenient regret. Importantly, we show that when the mean of the optimal arm is high enough, the lenient regret of $\epsilon$-TS is bounded by a constant. Finally, we show that $\epsilon$-TS can be applied to improve the performance when the agent knows a lower bound of the suboptimality gaps.


翻译:我们认为多武装盗匪(MAB)问题,即一个代理人按顺序选择动作并观察对其所采取行动的奖励。虽然大多数算法试图尽量减少遗憾,即最佳行动的奖励与代理人行动之间的累积差差,但这一标准可能导致不良结果。例如,在大问题中,或当与环境的互动很短暂时,找到一个最佳手臂是不可行的,而遗憾最小化的算法往往会过度爆炸。为了克服这一问题,这种环境的算法应该侧重于玩近最佳的手臂。为此,我们建议采用新的、更宽容的、更遗憾的标准,忽略比某些美元小的次优性差距。然后我们提出一个汤普森Smpling(TS)算法的变式,称为$epslon-TS, 并证明它从宽度的角度来说是无差别的。重要的是,当我们最佳手臂的平均值足够高的时候, $\epslon-plon-TS最终能够显示一个稳定的副动作。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
LibRec 每周算法:parameter-free contextual bandits (SIGIR'15)
LibRec智能推荐
5+阅读 · 2017年6月12日
Arxiv
5+阅读 · 2018年6月12日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
LibRec 每周算法:parameter-free contextual bandits (SIGIR'15)
LibRec智能推荐
5+阅读 · 2017年6月12日
Top
微信扫码咨询专知VIP会员