We show how to construct variance-aware confidence sets for linear bandits and linear mixture Markov Decision Process (MDP). Our method yields the following new regret bounds: * For linear bandits, we obtain an $\widetilde{O}(\mathrm{poly}(d)\sqrt{1 + \sum_{i=1}^{K}\sigma_i^2})$ regret bound, where $d$ is the feature dimension, $K$ is the number of rounds, and $\sigma_i^2$ is the (unknown) variance of the reward at the $i$-th round. This is the first regret bound that only scales with the variance and the dimension, with no explicit polynomial dependency on $K$. * For linear mixture MDP, we obtain an $\widetilde{O}(\mathrm{poly}(d, \log H)\sqrt{K})$ regret bound, where $d$ is the number of base models, $K$ is the number of episodes, and $H$ is the planning horizon. This is the first regret bound that only scales logarithmically with $H$ in the reinforcement learning with linear function approximation setting, thus exponentially improving existing results. Our methods utilize three novel ideas that may be of independent interest: 1) applications of the peeling techniques to the norm of input and the magnitude of variance, 2) a recursion-based approach to estimate the variance, and 3) a convex potential lemma that somewhat generalizes the seminal elliptical potential lemma.


翻译:我们展示了如何为线性土匪和线性混合物 Markov 决断进程构建有差异的信任度。 我们的方法产生了以下新的遗憾界限 : * 对于线性土匪,我们获得的是全色土匪( mathrm{poly})( d)\qrt{1 +\ sum ⁇ i=1 ⁇ K ⁇ sgma_i ⁇ 2}) 美元约束, 美元是特征维度, 美元是周期性, 美元是周期性美元报酬的( 未知) 。 这是第一个遗憾界限, 只有差异和层面的尺度, 没有明确的多色依赖 $. * 对于线性混合物, 我们得到的是 $\\ 百度{Kgma_ =1\ kgma_ =1\ kgma_ i2} ( poly} ( d, log H) = sqraltial } legleglegle, 美元是基础型模型的数值, $K$x 和直线性模型的模型的值 值 值 。

0
下载
关闭预览

相关内容

【经典书】线性代数,Linear Algebra,525页pdf
专知会员服务
77+阅读 · 2021年1月29日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
8+阅读 · 2019年7月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
蒙特卡罗方法(Monte Carlo Methods)
数据挖掘入门与实战
6+阅读 · 2018年4月22日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年4月12日
Arxiv
0+阅读 · 2021年4月7日
VIP会员
相关VIP内容
【经典书】线性代数,Linear Algebra,525页pdf
专知会员服务
77+阅读 · 2021年1月29日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
8+阅读 · 2019年7月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
蒙特卡罗方法(Monte Carlo Methods)
数据挖掘入门与实战
6+阅读 · 2018年4月22日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员