We study the problem of query evaluation on probabilistic graphs, namely, tuple-independent probabilistic databases over signatures of arity two. We focus on the class of queries closed under homomorphisms, or, equivalently, the infinite unions of conjunctive queries. Our main result states that the probabilistic query evaluation problem is #P-hard for all unbounded queries from this class. As bounded queries from this class are equivalent to a union of conjunctive queries, they are already classified by the dichotomy of Dalvi and Suciu (2012). Hence, our result and theirs imply a complete data complexity dichotomy, between polynomial time and #P-hardness, on evaluating homomorphism-closed queries over probabilistic graphs. This dichotomy covers in particular all fragments of infinite unions of conjunctive queries over arity-two signatures, such as negation-free (disjunctive) Datalog, regular path queries, and a large class of ontology-mediated queries. The dichotomy also applies to a restricted case of probabilistic query evaluation called generalized model counting, where fact probabilities must be 0, 0.5, or 1. We show the main result by reducing from the problem of counting the valuations of positive partitioned 2-DNF formulae, or from the source-to-target reliability problem in an undirected graph, depending on properties of minimal models for the query.
翻译:我们研究概率图表的查询评估问题,即对正态二人签名的独立概率数据库。 我们侧重于在同质主义下结束的查询类别, 或类似无穷无尽的连结性查询。 我们的主要结果显示, 本类所有未受约束的查询, 概率查询评估问题是 #P硬的。 本类的受约束查询相当于共质查询的结合, 它们已经被Dalvi和Scisuu(2012年)的二分法分类。 因此, 我们的结果及其结果意味着完全的数据复杂性二分法, 在多式时间和#P-硬性之间, 侧重于对共性封闭的查询类别, 而不是概率图表。 这种二人组合性查询特别涵盖了所有无边联性查询的碎片, 比如否定性(互不相交性)数据查询, 定期路径查询, 以及大量由直径解的查询类别。 因此, 我们的不稳性比较性评分法的个案, 需要从简单性模型计价, 或正性公式 显示正性结果 。