Spatio-temporal processes in environmental applications are often assumed to follow a Gaussian model, possibly after some transformation. However, heterogeneity in space and time might have a pattern that will not be accommodated by transforming the data. In this scenario, modelling the variance laws is an appealing alternative. This work adds flexibility to the usual Multivariate Dynamic Gaussian model by defining the process as a scale mixture between a Gaussian and log-Gaussian processes. The scale is represented by a process varying smoothly over space and time which is allowed to depend on covariates. State-space equations define the dynamics over time for both mean and variance processes resulting infeasible inference and prediction. Analysis of artificial datasets show that the parameters are identifiable and simpler models are well recovered by the general proposed model. The analyses of two important environmental processes, maximum temperature and maximum ozone, illustrate the effectiveness of our proposal in improving the uncertainty quantification in the prediction of spatio-temporal processes.
翻译:环境应用中的时空空间过程往往被假定为遵循高斯模型,可能在某些变异之后。然而,空间和时间的异质性可能有一个无法通过转换数据来适应的模式。在这种假设中,模拟差异法是一种令人感兴趣的替代办法。这项工作为通常的多变动态高斯模型增加了灵活性,将这一过程定义为高斯和日志-加西南进程之间的比例混合过程。这个规模代表着一个在空间和时间上差异不一的过程,允许以共变为依托。国家空间方程式界定了平均和差异过程的动态,导致不可行的推断和预测。对人为数据集的分析表明,参数是可识别的,一般提议模型完全恢复了更简单的模型。对两个重要的环境过程,即最高温度和最高臭氧的分析,说明了我们的建议在改进对时空过程预测的不确定性量化方面的有效性。