This paper focuses on analyzing and differentiating between lattice linear problems and algorithms. It introduces a new class of algorithms called \textit{(fully) lattice linear algorithms}. A property of these algorithms is that they induce a partial order among all states and form \textit{multiple lattices}. An initial state locks in one of these lattices. We present a lattice linear self-stabilizing algorithm for minimal dominating set.
翻译:本文侧重于分析并区分 lattice 线性问题和算法。 它引入了一种新的算法类别, 叫做\ textit{( 完全) lattice 线性算法} 。 这些算法的一个属性是, 这些算法在各州中诱发部分顺序, 并形成\ textit{ 多重 lattices} 。 初始状态锁定在其中的一个 lattics 中。 我们为最小的占有权设置提供了一种 lattice 线性自稳定算法 。