We present two interactive visualisations of 2x2 real matrices, which we call v1 and v2. v1 is only valid for PSD matrices, and uses the spectral theorem in a trivial way -- we use it as a warm-up. By contrast, v2 is valid for *all* 2x2 real matrices, and is based on the lesser known theory of Lie Sphere Geometry. We show that the dynamics of iterative eigenvalue algorithms can be illustrated using both. v2 has the advantage that it simultaneously depicts many properties of a matrix, all of which are relevant to the study of eigenvalue algorithms. Examples of the properties of a matrix that v2 can depict are its Jordan Normal Form and orthogonal similarity class, as well as whether it is triangular, symmetric or orthogonal. Despite its richness, using v2 interactively seems rather intuitive.
翻译:我们对 2x2 真实矩阵进行两个互动视觉化, 我们称之为 v1 和 v2 v1, 仅对 DPF 矩阵有效, 并以微不足道的方式使用光谱定理-- 我们用它作为暖化。 相反, v2 对 *all * 2x2 真实矩阵有效, 并基于不为人所知的 Lie Sphere 几何理论。 我们显示, 迭代电子值算法的动态可以用 。 v2 两者的优点是, 它同时描述一个矩阵的许多特性, 所有这些特性都与 egenvalue 算法的研究有关。 v2 能够描述的矩阵的属性实例是 Jordan 常态和 orthogoal 相似性等级, 以及它是三角、 tymlogy 或 orthogoal 。 尽管它丰富, 使用 v2 交互性似乎相当直观。