The detection of rare and hazardous driving scenarios is a critical challenge for ensuring the safety and reliability of autonomous systems. This research explores an unsupervised learning framework for detecting rare and extreme driving scenarios using naturalistic driving data (NDD). We leverage the recently proposed Deep Isolation Forest (DIF), an anomaly detection algorithm that combines neural network-based feature representations with Isolation Forests (IFs), to identify non-linear and complex anomalies. Data from perception modules, capturing vehicle dynamics and environmental conditions, is preprocessed into structured statistical features extracted from sliding windows. The framework incorporates t-distributed stochastic neighbor embedding (t-SNE) for dimensionality reduction and visualization, enabling better interpretability of detected anomalies. Evaluation is conducted using a proxy ground truth, combining quantitative metrics with qualitative video frame inspection. Our results demonstrate that the proposed approach effectively identifies rare and hazardous driving scenarios, providing a scalable solution for anomaly detection in autonomous driving systems. Given the study's methodology, it was unavoidable to depend on proxy ground truth and manually defined feature combinations, which do not encompass the full range of real-world driving anomalies or their nuanced contextual dependencies.
翻译:罕见且危险的驾驶场景检测是确保自动驾驶系统安全性与可靠性的关键挑战。本研究探索了一种利用自然驾驶数据(NDD)检测罕见及极端驾驶场景的无监督学习框架。我们采用近期提出的深度孤立森林(DIF)——一种将基于神经网络的特征表示与孤立森林(IFs)相结合的异常检测算法——以识别非线性及复杂的异常情况。从感知模块获取的车辆动力学与环境条件数据,经预处理后转换为从滑动窗口提取的结构化统计特征。该框架结合t分布随机邻域嵌入(t-SNE)进行降维与可视化,从而提升检测异常的 interpretability。评估采用代理真实值进行,结合定量指标与定性视频帧检查。结果表明,所提方法能有效识别罕见及危险驾驶场景,为自动驾驶系统中的异常检测提供了可扩展的解决方案。受研究方法所限,本研究不可避免地依赖于代理真实值与人工定义的特征组合,这些未能涵盖现实世界驾驶异常的全部范围及其细微的上下文依赖关系。