In cluttered environments, motion planners often face a trade-off between safety and speed due to uncertainty caused by occlusions and limited sensor range. In this work, we investigate whether co-pilot instructions can help robots plan more decisively while remaining safe. We introduce PaceForecaster, as an approach that incorporates such co-pilot instructions into local planners. PaceForecaster takes the robot's local sensor footprint (Level-1) and the provided co-pilot instructions as input and predicts (i) a forecasted map with all regions visible from Level-1 (Level-2) and (ii) an instruction-conditioned subgoal within Level-2. The subgoal provides the planner with explicit guidance to exploit the forecasted environment in a goal-directed manner. We integrate PaceForecaster with a Log-MPPI controller and demonstrate that using language-conditioned forecasts and goals improves navigation performance by 36% over a local-map-only baseline while in polygonal environments.
翻译:在杂乱环境中,由于遮挡和传感器范围有限带来的不确定性,运动规划器常常面临安全性与速度之间的权衡。本研究探讨了协同驾驶指令是否能帮助机器人在保持安全的同时进行更果断的规划。我们提出了PaceForecaster方法,将此类协同驾驶指令整合到局部规划器中。PaceForecaster以机器人的局部传感器覆盖范围(第一层级)和提供的协同驾驶指令作为输入,预测(i)从第一层级可见所有区域的预测地图(第二层级),以及(ii)第二层级内基于指令条件的子目标。该子目标为规划器提供了明确指导,使其能够以目标导向的方式利用预测环境。我们将PaceForecaster与Log-MPPI控制器集成,实验证明在多边形环境中,使用语言条件预测和目标可将导航性能较仅使用局部地图的基线提升36%。