Recent Autonomous Vehicles (AV) technology includes machine learning and probabilistic techniques that add significant complexity to the traditional verification and validation methods. The research community and industry have widely accepted scenario-based testing in the last few years. As it is focused directly on the relevant crucial road situations, it can reduce the effort required in testing. Encoding real-world traffic participants' behaviour is essential to efficiently assess the System Under Test (SUT) in scenario-based testing. So, it is necessary to capture the scenario parameters from the real-world data that can model scenarios realistically in simulation. The primary emphasis of the paper is to identify the list of meaningful parameters that adequately model real-world lane-change scenarios. With these parameters, it is possible to build a parameter space capable of generating a range of challenging scenarios for AV testing efficiently. We validate our approach using Root Mean Square Error(RMSE) to compare the scenarios generated using the proposed parameters against the real-world trajectory data. In addition to that, we demonstrate that adding a slight disturbance to a few scenario parameters can generate different scenarios and utilise Responsibility-Sensitive Safety (RSS) metric to measure the scenarios' risk.
翻译:最近自主车辆技术包括机器学习和概率技术,这些技术大大增加了传统核查和验证方法的复杂程度。研究界和工业界在过去几年中广泛接受基于情景的测试。由于它直接侧重于相关的关键道路状况,它可以减少测试所需的努力。在基于情景的测试中,对现实世界交通参与者的行为进行编码对于有效评估测试系统(SUT)至关重要。因此,有必要从真实世界数据中获取情景参数,这些参数可以在模拟中现实地模拟假设情景。文件的主要重点是确定能够充分模拟真实世界道路变化情景的有意义的参数清单。有了这些参数,有可能建立一个参数空间,为AV测试产生一系列具有挑战性的情景。我们用“根极平方错误”来验证我们使用拟议参数与真实世界轨迹数据比较情景的方法。此外,我们证明,在少数情景参数中添加轻微扰动,可以产生不同情景,并利用责任敏感安全度测量情景的风险。