A deep neural network (DNN) is trained to estimate the speed of a car driving in an urban area using as input a stream of measurements from a low-cost six-axis inertial measurement unit (IMU). Three hours of data was collected by driving through the city of Ashdod, Israel in a car equipped with a global navigation satellite system (GNSS) real time kinematic (RTK) positioning device and a synchronized IMU. Ground truth labels for the car speed were calculated using the position measurements obtained at the high rate of 50 Hz. A DNN architecture with long short-term memory layers is proposed to enable high-frequency speed estimation that accounts for previous inputs history and the nonlinear relation between speed, acceleration and angular velocity. A simplified aided dead reckoning localization scheme is formulated to assess the trained model which provides the speed pseudo-measurement. The trained model is shown to substantially improve the position accuracy during a 4 minutes drive without the use of GNSS position updates.
翻译:深神经网络(DNN)经过培训,利用一个低成本的六轴惯性测量单位(IMU)的测量数据流作为输入,对城市地区汽车驾驶速度进行估计,通过一个低成本的六轴惯性测量单位(IMU)收集了3小时的数据,该测量单位通过Ashdod市,以色列驾驶一辆配有全球导航卫星系统实时动能定位装置和同步的IMU的汽车,在一辆汽车速度方面进行了深神经网络(DNN)的计算。使用以50赫兹高速度测量的定位测量,计算了车速的地面真实标签。 提议建立一个具有长期短期内存层的DNNN结构,以便能够进行高频速度估计,说明以往输入历史以及速度、加速速度和角速度之间的非线性关系。制定了一个简化的辅助性死亡计算本地化计划,以评估提供速度假计量的经过培训的模型。经过培训的模型显示,可以在不使用全球导航卫星系统位置更新的情况下,在4分钟的驾驶期间大大提高定位的准确性。