Urban research aims to understand how cities operate and evolve as complex adaptive systems. With the rapid growth of urban data and analytical methodologies, the central challenge of the field has shifted from data availability to the integration of heterogeneous data into coherent, verifiable urban knowledge through multidisciplinary approaches. Recent advances in AI, particularly the emergence of large language models (LLMs), have enabled the development of AI scientists capable of autonomous reasoning, hypothesis generation, and data-driven experimentation, demonstrating substantial potential for autonomous urban research. However, most general-purpose AI systems remain misaligned with the domain-specific knowledge, methodological conventions, and inferential standards required in urban studies. Here, we introduce the AI Urban Scientist, a knowledge-driven multi-agent framework designed to support autonomous urban research. Grounded in hypotheses, peer-review feedback, datasets, and research methodologies distilled from large-scale prior studies, the system constructs structured domain knowledge that guides LLM-based agents to automatically generate hypotheses, identify and integrate multi-source urban datasets, conduct empirical analyses and simulations, and iteratively refine analytical methods. Through this process, the framework synthesizes new insights in urban science and accelerates the urban research lifecycle.
翻译:城市研究旨在理解城市作为复杂适应系统的运行与演化机制。随着城市数据与分析方法的快速增长,该领域的核心挑战已从数据获取转向如何通过多学科方法将异构数据整合为连贯、可验证的城市知识。人工智能(AI)的最新进展,尤其是大语言模型(LLMs)的出现,推动了能够进行自主推理、假设生成和数据驱动实验的AI科学家的发展,为自主城市研究展现出巨大潜力。然而,大多数通用AI系统仍难以满足城市研究所需的领域知识、方法惯例与推理标准。本文提出AI Urban Scientist,一个知识驱动的多智能体框架,旨在支持自主城市研究。该系统基于从大规模先前研究中提炼的假设、同行评审反馈、数据集及研究方法,构建结构化领域知识,进而引导基于LLM的智能体自动生成假设、识别并整合多源城市数据集、开展实证分析与模拟,并迭代优化分析方法。通过这一流程,该框架能够综合城市科学的新见解,并加速城市研究的生命周期。