Future AI-native wireless networks are moving from reactive optimization to agentic decision-making that can sense, predict, and plan under fast-varying channels. This calls for wireless world models that can predict and roll out channel dynamics, for which multi-step channel state information (CSI) prediction offers a practical short-horizon look-ahead. Recent advances in foundation sequence models further motivate large language models (LLMs) as general-purpose dynamics learners when suitably adapted to non-text time-series signals. However, bridging CSI to LLMs is non-trivial because an effective adapter must expose informative spectral and temporal evolution patterns, while prior designs provide limited inductive bias to capture such channel structures. To this end, we propose SCA-LLM, a spectral-attentive LLM-based wireless world modeling framework that bridges CSI to LLMs via a spectral-channel attention (SCA) adapter. Specifically, the SCA adapter performs multi-spectral representation learning to extract informative channel features and align CSI with the LLM's sequence modeling capability, enabling parameter-efficient adaptation while keeping the LLM backbone largely frozen. Extensive simulations show that SCA-LLM achieves state-of-the-art prediction performance and strong zero-shot generalization, yielding up to -2.4 dB normalized mean squared error (NMSE) advantage over the previous LLM based method. Our ablation studies further confirm the effectiveness of the proposed SCA adapter in mitigating domain mismatch.
翻译:未来的AI原生无线网络正从被动式优化转向智能体决策,能够在快速变化的信道环境下进行感知、预测和规划。这需要能够预测并推演信道动态的无线世界模型,其中多步信道状态信息预测为实现实用的短时域前瞻提供了可能。基础序列模型的最新进展进一步激励了将大语言模型作为通用动力学学习器的潜力,只要将其适配于非文本时间序列信号。然而,将CSI与LLM桥接并非易事,因为一个有效的适配器必须揭示信息丰富的频谱和时域演化模式,而先前的设计在捕获此类信道结构方面提供的归纳偏置有限。为此,我们提出了SCA-LLM,一种基于谱注意力大语言模型的无线世界建模框架,它通过谱-信道注意力适配器将CSI与LLM连接起来。具体而言,SCA适配器执行多频谱表征学习,以提取信息丰富的信道特征,并将CSI与LLM的序列建模能力对齐,从而实现参数高效的适配,同时保持LLM主干网络基本冻结。大量仿真表明,SCA-LLM实现了最先进的预测性能和强大的零样本泛化能力,相较于先前基于LLM的方法,其归一化均方误差优势最高可达-2.4 dB。我们的消融研究进一步证实了所提出的SCA适配器在缓解领域失配方面的有效性。