Ensemble learning serves as a straightforward way to improve the performance of almost any machine learning algorithm. Existing deep ensemble methods usually naively train many different models and then aggregate their predictions. This is not optimal in our view from two aspects: i) Naively training multiple models adds much more computational burden, especially in the deep learning era; ii) Purely optimizing each base model without considering their interactions limits the diversity of ensemble and performance gains. We tackle these issues by proposing deep negative correlation classification (DNCC), in which the accuracy and diversity trade-off is systematically controlled by decomposing the loss function seamlessly into individual accuracy and the correlation between individual models and the ensemble. DNCC yields a deep classification ensemble where the individual estimator is both accurate and negatively correlated. Thanks to the optimized diversities, DNCC works well even when utilizing a shared network backbone, which significantly improves its efficiency when compared with most existing ensemble systems. Extensive experiments on multiple benchmark datasets and network structures demonstrate the superiority of the proposed method.


翻译:综合学习是提高几乎任何机器学习算法的绩效的直截了当的方法。现有的深层混合方法通常天真地训练了许多不同的模型,然后将它们的预测综合起来。我们认为这不是最佳的方法,有两个方面:(一) 高级培训多种模型增加了更多的计算负担,特别是在深层次学习时代;(二) 完全优化每一种基础模型,而不考虑它们的相互作用限制了共性和绩效收益的多样性。我们通过提出深刻的负相关分类(DNCC)来解决这些问题,在这种分类中,将损失函数无缝地分解为个人准确性以及个人模型和共性之间的相关性,从而系统地控制准确性和多样性的权衡。DNCC产生了一种深度分类的共性,个人估计器既准确又具有负相关性。由于优化的多样化,即使利用共同的网络骨干,DNCC仍然很有效,与大多数现有的混合系统相比,这也大大提高了它的效率。关于多个基准数据集和网络结构的广泛实验显示了拟议方法的优越性。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
A Survey on Data Augmentation for Text Classification
Arxiv
12+阅读 · 2019年3月14日
Arxiv
11+阅读 · 2018年10月17日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员