Algorithmic decision making has proliferated and now impacts our daily lives in both mundane and consequential ways. Machine learning practitioners make use of a myriad of algorithms for predictive models in applications as diverse as movie recommendations, medical diagnoses, and parole recommendations without delving into the reasons driving specific predictive decisions. Machine learning algorithms in such applications are often chosen for their superior performance, however popular choices such as random forest and deep neural networks fail to provide an interpretable understanding of the predictive model. In recent years, rule-based algorithms have been used to address this issue. Wang et al. (2017) presented an or-of-and (disjunctive normal form) based classification technique that allows for classification rule mining of a single class in a binary classification; this method is also shown to perform comparably to other modern algorithms. In this work, we extend this idea to provide classification rules for both classes simultaneously. That is, we provide a distinct set of rules for both positive and negative classes. In describing this approach, we also present a novel and complete taxonomy of classifications that clearly capture and quantify the inherent ambiguity in noisy binary classifications in the real world. We show that this approach leads to a more granular formulation of the likelihood model and a simulated-annealing based optimization achieves classification performance competitive with comparable techniques. We apply our method to synthetic as well as real world data sets to compare with other related methods that demonstrate the utility of our proposal.


翻译:机器学习从业者在电影建议、医学诊断和假释建议等多种应用应用中,使用各种算法来预测模型,而不必细细考虑促使作出具体预测决定的原因。 在这类应用中,机器学习算法往往因其优异性而选择,然而,随机森林和深神经网络等大众选择无法提供对预测模式的可解释理解性理解。近年来,基于规则的算法被用来解决这一问题。 Wang et al. (2017年) 提供了一种或多种(常规形式的)基于分类技术,允许对分类规则进行分类,在二元分类中挖掘单一类别;这种方法也显示与其他现代算法相匹配。在这项工作中,我们将这一理念扩大到为这两个类别同时提供分类规则,即随机森林和深层神经网络等大众选择无法提供对预测性模型的可解释性理解性理解性理解。在描述这一方法时,我们还提出了一种新颖和完整的分类方法,即清晰地记录和量化了我们以宁比性比性方法在现实世界中的内在实用性比较方法,我们展示了一种具有可比性的精准性的最佳方法。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月4日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员