Efficient motion planning algorithms are of central importance for deploying robots in the real world. Unfortunately, these algorithms often drastically reduce the dimensionality of the problem for the sake of feasibility, thereby foregoing optimal solutions. This limitation is most readily observed in agile robots, where the solution space can have multiple additional dimensions. Optimal control approaches partially solve this problem by finding optimal solutions without sacrificing the complexity of the environment, but do not meet the efficiency demands of real-world applications. This work proposes an approach to resolve these issues simultaneously by training a machine learning model on the outputs of an optimal control approach.
翻译:高效的动作规划算法对于在现实世界部署机器人至关重要。 不幸的是,这些算法往往为了可行性而大幅降低问题的维度,从而取代了最佳解决方案。 这一限制在灵活机器人中最容易观察到,因为解决方案空间可能具有多个额外层面。 最佳控制方法通过找到最佳解决方案而不牺牲环境的复杂性而部分解决这一问题,但无法满足现实世界应用的效率需求。 这项工作提出了同时解决这些问题的方法,通过培训机器学习模型来了解最佳控制方法的产出。