Causal DAG(Directed Acyclic Graph) usually lies in a 2D plane without distinguishing correlation changes and causal effects. Also, the causal effect is often approximately estimated by averaging the population's correlation changes. Now, AI(Artificial Intelligence) enables much larger-scale structural modeling, whose complex hidden confoundings make the approximation errors no longer ignorable but can snowball to considerable population-level Causal Representation Bias. Such bias has caused significant problems: ungeneralizable causal models, unrevealed individual-level features, not utilizable causal knowledge in DL(Deep Learning), etc. In short, DAG must be redefined to enable a new framework for causal AI. Observational time series can only reflect correlation changes in statistics. But the DL-based autoencoder can represent them as individual-level feature changes in latent space to reflect causal effects. In this paper, we introduce the redefined do-DAG concept and propose Causal Representation Learning (CRL) framework as the generic solution, along with a novel architecture to realize CRL and experimentally verify its feasibility.
翻译:因果有向无环图(DAG)通常位于2D平面上,无法区分相关性变化和因果作用。此外,因果效应往往通过对人群的相关性变化进行平均计算来进行近似估计。现在,人工智能(AI)使得更大规模的结构建模成为可能,其复杂的隐藏混淆使得近似误差不能再被忽略,而且可能会造成可观的人口级因果表示偏差。这种偏见已经引起了重要的问题:无法泛化的因果模型,未揭示的个体级特征,不能在深度学习(DL)中利用的因果知识等。简言之,必须重新定义DAG以实现因果人工智能的新框架。观察性时间序列只能反映统计上的相关性变化。但是,基于DL的自编码器可以将它们表示为潜在空间中的个体级特征变化,以反映因果效应。在本文中,我们介绍了重新定义的“do-DAG”概念,并提出了因果表示学习(CRL)框架作为通用解决方案,以及一个新的架构,以实现CRL并实验验证其可行性。