Linear discriminant analysis (LDA) is a typical method for classification problems with large dimensions and small samples. There are various types of LDA methods that are based on the different types of estimators for the covariance matrices and mean vectors. In this paper, we consider shrinkage methods based on a non-parametric approach. For the precision matrix, methods based on the sparsity structure or data splitting are examined. Regarding the estimation of mean vectors, Non-parametric Empirical Bayes (NPEB) methods and Non-parametric Maximum Likelihood Estimation (NPMLE) methods, also known as f-modeling and g-modeling, respectively, are adopted. The performance of linear discriminant rules based on combined estimation strategies of the covariance matrix and mean vectors are analyzed in this study. Particularly, the study presents a theoretical result on the performance of the NPEB method and compares it with previous studies. Simulation studies with various covariance matrices and mean vector structures are conducted to evaluate the methods discussed in this paper. Furthermore, real data examples such as gene expressions and EEG data are also presented


翻译:线性分辨分析(LDA)是大尺寸和小样品分类问题的典型方法,有多种LDA方法,分别以不同种类的共变矩阵和中值矢量估计器为基础,在本文件中,我们考虑非参数方法的缩缩缩方法,在精确矩阵中,根据宽度结构或数据分离的方法加以研究,关于平均矢量估计、非参数光谱贝类方法和非参数最大相似度估计法(NPMLE)方法,也分别称为F-模型和g-模型,本研究报告分析了基于共变矩阵和中值矢量综合估计战略的线性差异规则的性能,特别是,研究报告介绍了关于NPEB方法的性能的理论结果,并将其与以往的研究进行比较,对各种异变矩阵和中值平均矢量结构进行了模拟研究,以评估本文件所讨论的方法。此外,还介绍了基因表达和EEG数据等真实数据示例。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员