Meaningful uncertainty quantification in computer vision requires reasoning about semantic information -- say, the hair color of the person in a photo or the location of a car on the street. To this end, recent breakthroughs in generative modeling allow us to represent semantic information in disentangled latent spaces, but providing uncertainties on the semantic latent variables has remained challenging. In this work, we provide principled uncertainty intervals that are guaranteed to contain the true semantic factors for any underlying generative model. The method does the following: (1) it uses quantile regression to output a heuristic uncertainty interval for each element in the latent space (2) calibrates these uncertainties such that they contain the true value of the latent for a new, unseen input. The endpoints of these calibrated intervals can then be propagated through the generator to produce interpretable uncertainty visualizations for each semantic factor. This technique reliably communicates semantically meaningful, principled, and instance-adaptive uncertainty in inverse problems like image super-resolution and image completion.
翻译:计算机视觉中有意义的不确定性量化要求对语义信息进行推理 -- -- 比如,照片上的人的毛发颜色或者汽车在街上的位置。为此,最近在基因模型方面的突破使我们能够在分解的潜伏空间中代表语义信息,但提供语义潜在变量的不确定性仍然具有挑战性。在这项工作中,我们提供了原则性不确定性间隔,保证包含任何基本基因模型的真正语义要素。这种方法做到如下:(1)它使用二次回归来输出潜在空间中每个元素的超常不确定性间隔;(2)校准这些不确定性,使其包含新的、不可见的输入的潜值的真实值。这些经过校准的间隔的终点可以通过生成器传播,为每个语义要素产生可解释的不确定性可视化数据。这种技术可靠地传递了像图像超分辨率和图像完成这样的反问题中的语义性、有原则性和可试性不确定性。