Scatterplots are among the most widely used visualization techniques. Compelling scatterplot visualizations improve understanding of data by leveraging visual perception to boost awareness when performing specific visual analytic tasks. Design choices in scatterplots, such as graphical encodings or data aspects, can directly impact decision-making quality for low-level tasks like clustering. Hence, constructing frameworks that consider both the perceptions of the visual encodings and the task being performed enables optimizing visualizations to maximize efficacy. In this paper, we propose an automatic tool to optimize the design factors of scatterplots to reveal the most salient cluster structure. Our approach leverages the merge tree data structure to identify the clusters and optimize the choice of subsampling algorithm, sampling rate, marker size, and marker opacity used to generate a scatterplot image. We validate our approach with user and case studies that show it efficiently provides high-quality scatterplot designs from a large parameter space.
翻译:散射图是最广泛使用的可视化技术之一。 粉碎图的可视化通过利用视觉感知来提高特定视觉分析任务的认识,提高了对数据的了解。 散射图的设计选择, 如图形编码或数据方面, 可以直接影响到低层次任务的决策质量, 如集群。 因此, 构建框架, 既考虑视觉编码的认知, 也考虑所执行的任务, 就能优化可视化, 以最大限度地发挥效能。 本文中, 我们提议了一个自动工具, 优化散射图的设计要素, 以显示最突出的集群结构。 我们的方法是利用合并树形数据结构来识别群, 优化用于生成散射图图像的子抽样算法、 取样率、 标记大小和标记不透明性的选择 。 我们用用户和案例研究来验证我们的方法, 表明它能有效地提供来自大参数空间的高质量散射图设计 。