Adversarial examples are carefully crafted attack points that are supposed to fool machine learning classifiers. In the last years, the field of adversarial machine learning, especially the study of perturbation-based adversarial examples, in which a perturbation that is not perceptible for humans is added to the images, has been studied extensively. Adversarial training can be used to achieve robustness against such inputs. Another type of adversarial examples are invariance-based adversarial examples, where the images are semantically modified such that the predicted class of the model does not change, but the class that is determined by humans does. How to ensure robustness against this type of adversarial examples has not been explored yet. This work addresses the impact of adversarial training with invariance-based adversarial examples on a convolutional neural network (CNN). We show that when adversarial training with invariance-based and perturbation-based adversarial examples is applied, it should be conducted simultaneously and not consecutively. This procedure can achieve relatively high robustness against both types of adversarial examples. Additionally, we find that the algorithm used for generating invariance-based adversarial examples in prior work does not correctly determine the labels and therefore we use human-determined labels.


翻译:反对立实例是精心设计的用来愚弄机器学习分类师的进攻点。在过去几年中,对立机器学习领域,特别是以扰动为基础的对抗性例子的研究,已经进行了广泛的研究,其中将人类无法察觉到的扰动性例子添加到图像中。对立培训可用于针对这种投入实现稳健性。另一类对抗性例子是基于逆差的对抗性例子,其中图像是静态的修改,使模型的预测类别没有变化,但人类决定的类别却有变化。如何确保针对这种类型的对抗性例子的稳健性研究尚未得到探讨。这项工作解决了对抗性训练与基于差异的对抗性例子对动态神经网络(CNN)的影响。我们表明,在应用基于差异和以扰动为基础的对抗性对抗性例子的对抗性训练时,应当同时进行,而不是连续进行。这一程序对于两种类型的对抗性例子,都能够实现相对较高的稳健性。此外,我们发现,在先前的标签中,我们没有正确使用以对抗性标签为基础的矩阵。

0
下载
关闭预览

相关内容

最新《生成式对抗网络》简介,25页ppt
专知会员服务
168+阅读 · 2020年6月28日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
38+阅读 · 2020年3月10日
Generative Adversarial Networks: A Survey and Taxonomy
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员