Black-box adversarial attacks have shown strong potential to subvert machine learning models. Existing black-box adversarial attacks craft the adversarial examples by iteratively querying the target model and/or leveraging the transferability of a local surrogate model. Whether such attack can succeed remains unknown to the adversary when empirically designing the attack. In this paper, to our best knowledge, we take the first step to study a new paradigm of adversarial attacks -- certifiable black-box attack that can guarantee the attack success rate of the crafted adversarial examples. Specifically, we revise the randomized smoothing to establish novel theories for ensuring the attack success rate of the adversarial examples. To craft the adversarial examples with the certifiable attack success rate (CASR) guarantee, we design several novel techniques, including a randomized query method to query the target model, an initialization method with smoothed self-supervised perturbation to derive certifiable adversarial examples, and a geometric shifting method to reduce the perturbation size of the certifiable adversarial examples for better imperceptibility. We have comprehensively evaluated the performance of the certifiable black-box attack on CIFAR10 and ImageNet datasets against different levels of defenses. Both theoretical and experimental results have validated the effectiveness of the proposed certifiable attack.
翻译:可证明成功率的黑盒攻击:确保敌对样本的攻击成功
翻译后的摘要:
黑盒敌对攻击已经显示出破坏机器学习模型的强大潜力。现有的黑盒敌对攻击通过迭代查询目标模型、或利用本地代理模型的可迁移性来制作敌对样本。当敌对样本被经验性地设计时,攻击是否能成功对攻击者来说仍然是未知的。在本文中,我们首次研究了一种新型的敌对攻击范例——可证明成功率的黑盒攻击,该攻击可保证敌对样本的攻击成功率。具体来说,我们修改随机平滑方法以确立新理论,以保证敌对样本的攻击成功率。为了制作带有可证明攻击成功率(CASR)保证的敌对样本,我们设计了若干新技术,包括一种随机查询方法,用于查询目标模型,一种带有平滑的自监督扰动初始化方法,用于推导可证明的敌对样本,以及一种几何平移方法,用于减少可证明敌对样本的扰动大小,以获得更好的隐蔽性。我们全面评估了CIFAR10和ImageNet数据集上的可证明黑盒攻击的性能,以对抗不同水平的防御。理论和实验结果均验证了所提出的可证明攻击的有效性。