Recently, various methods for 6D pose and shape estimation of objects have been proposed. Typically, these methods evaluate their pose estimation in terms of average precision, and reconstruction quality with chamfer distance. In this work we take a critical look at this predominant evaluation protocol including metrics and datasets. We propose a new set of metrics, contribute new annotations for the Redwood dataset and evaluate state-of-the-art methods in a fair comparison. We find that existing methods do not generalize well to unconstrained orientations, and are actually heavily biased towards objects being upright. We contribute an easy-to-use evaluation toolbox with well-defined metrics, method and dataset interfaces, which readily allows evaluation and comparison with various state-of-the-art approaches (see https://github.com/roym899/pose_and_shape_evaluation ).
翻译:最近,提出了6D构成和形状天体估计的各种方法,通常,这些方法以平均精确度来评价其构成估计,并以查姆费尔距离来评估重建质量。在这项工作中,我们批判性地审视了这一主要的评估协议,包括指标和数据集。我们提出了一套新的衡量标准,为红木数据集提供了新的说明,并以公平的比较方式评价了最新的方法。我们发现,现有方法并不十分适合不受限制的方向,实际上严重偏向于正统的物体。我们贡献了一个易于使用的评价工具箱,配有定义明确的指标、方法和数据集接口,便于与各种最先进的方法进行评价和比较(见https://github./comroym899/pose_and_shape_eva)。