We present a numerical approach for computing attractive-repulsive power law equilibrium measures in arbitrary dimension. We prove new recurrence relationships for radial Jacobi polynomials on $d$-dimensional ball domains, providing a substantial generalization of the work based on recurrence relationships of Riesz potentials on arbitrary dimensional balls. Among the attractive features of the numerical method are good efficiency due to recursively generated banded and approximately banded Riesz potential operators and computational complexity independent of the dimension $d$, in stark contrast to the widely used particle swarm simulation approaches for these problems which scale catastrophically with the dimension. We present several numerical experiments to showcase the accuracy and applicability of the method and discuss how our method compares with alternative numerical approaches and conjectured analytical solutions which exist for certain special cases. Finally, we discuss how our method can be used to explore the analytically poorly understood gap formation boundary to spherical shell support.


翻译:我们为任意的维度计算有吸引力的修复权力法平衡措施提供了一种数字方法。我们证明,在美元-维球域上,辐射 Jacobi 多元模拟器的重复出现新关系,大量概括了Riesz 潜力在任意维度球上的重复发生的关系。数字方法的吸引特征包括:由于循环生成的带宽和大约带宽的Riesz潜在操作员以及独立于维度的计算复杂性,因此具有良好的效率,这与针对这些问题广泛使用的粒子群温模拟方法形成鲜明对比,因为这些方法的规模与维度相比是灾难性的。我们提出了几项数字实验,以展示该方法的准确性和适用性,并讨论了我们的方法如何与某些特殊案例存在的替代数字方法和预测分析解决方案进行比较。最后,我们讨论了我们的方法如何用来探索在分析上理解不甚深的缺口形成边界,以获得球壳支持。

0
下载
关闭预览

相关内容

CC在计算复杂性方面表现突出。它的学科处于数学与计算机理论科学的交叉点,具有清晰的数学轮廓和严格的数学格式。官网链接:https://link.springer.com/journal/37
专知会员服务
81+阅读 · 2021年7月31日
【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
28+阅读 · 2021年7月16日
专知会员服务
50+阅读 · 2020年12月14日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
专知会员服务
60+阅读 · 2020年3月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Neural Flows: Efficient Alternative to Neural ODEs
Arxiv
0+阅读 · 2021年10月25日
Arxiv
0+阅读 · 2021年10月25日
Arxiv
0+阅读 · 2021年10月22日
Arxiv
0+阅读 · 2021年10月22日
VIP会员
相关VIP内容
专知会员服务
81+阅读 · 2021年7月31日
【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
28+阅读 · 2021年7月16日
专知会员服务
50+阅读 · 2020年12月14日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
专知会员服务
60+阅读 · 2020年3月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员