We present a numerical approach for computing attractive-repulsive power law equilibrium measures in arbitrary dimension. We prove new recurrence relationships for radial Jacobi polynomials on $d$-dimensional ball domains, providing a substantial generalization of the work based on recurrence relationships of Riesz potentials on arbitrary dimensional balls. Among the attractive features of the numerical method are good efficiency due to recursively generated banded and approximately banded Riesz potential operators and computational complexity independent of the dimension $d$, in stark contrast to the widely used particle swarm simulation approaches for these problems which scale catastrophically with the dimension. We present several numerical experiments to showcase the accuracy and applicability of the method and discuss how our method compares with alternative numerical approaches and conjectured analytical solutions which exist for certain special cases. Finally, we discuss how our method can be used to explore the analytically poorly understood gap formation boundary to spherical shell support.
翻译:我们为任意的维度计算有吸引力的修复权力法平衡措施提供了一种数字方法。我们证明,在美元-维球域上,辐射 Jacobi 多元模拟器的重复出现新关系,大量概括了Riesz 潜力在任意维度球上的重复发生的关系。数字方法的吸引特征包括:由于循环生成的带宽和大约带宽的Riesz潜在操作员以及独立于维度的计算复杂性,因此具有良好的效率,这与针对这些问题广泛使用的粒子群温模拟方法形成鲜明对比,因为这些方法的规模与维度相比是灾难性的。我们提出了几项数字实验,以展示该方法的准确性和适用性,并讨论了我们的方法如何与某些特殊案例存在的替代数字方法和预测分析解决方案进行比较。最后,我们讨论了我们的方法如何用来探索在分析上理解不甚深的缺口形成边界,以获得球壳支持。