Time-harmonic solutions to the wave equation can be computed in the frequency or in the time domain. In the frequency domain, one solves a discretized Helmholtz equation, while in the time domain, the periodic solutions to a discretized wave equation are sought, e.g. by simulating for a long time with a time-harmonic forcing term. Disadvantages of the time-domain method are that the solutions are affected by temporal discretization errors and that the spatial discretization cannot be freely chosen, since it is inherited from the time-domain scheme. In this work we address these issues. Given an indefinite linear system satisfying certain properties, a matrix recurrence relation is constructed, such that in the limit the exact discrete solution is obtained. By iterating a large, finite number of times, an approximate solution is obtained, similarly as in a time-domain method for the Helmholtz equation. To improve the convergence, the process is used as a preconditioner for GMRES, and the time-harmonic forcing term is multiplied by a smooth window function. The construction is applied to a compact-stencil finite-difference discretization of the Helmholtz equation, for which previously no time-domain solver was available. Advantages of the resulting solver are the relative simplicity, small memory requirement and reasonable computation times.
翻译:可以用频率或时间域来计算波方程式的时间和谐解决方案。 在频率域中, 一个人可以解决离散的 Helmholtz 方程式, 在时间域中, 寻找离散的波方程式的定期解决方案, 例如用时间- 和谐强制期长时间模拟。 时间域法的缺点是, 解决方案会受到时间离散错误的影响, 空间离散无法自由选择, 因为它是从时间- 域方案继承的。 在这项工作中, 我们处理这些问题。 在一个不定期的线性系统满足某些特性的情况下, 构建了一个矩阵重复关系, 从而在精确的离散解方程式的极限中, 获得一个周期性解决方案, 与Helmholtz 方程式的时间- 度方法相似。 为改善趋同, 程序将用作 GMRES 的前提条件, 时间- 协调性强迫期会通过一个平稳的窗口函数进行倍增 。 构造会应用到一个不固定的线性线性系统, 这样的矩阵重复关系, 在精确的离散解解解的限度内, 后, 直线式的直径解式的直径解式的直径等式的直径等式计算, 。