Neural ordinary differential equations describe how values change in time. This is the reason why they gained importance in modeling sequential data, especially when the observations are made at irregular intervals. In this paper we propose an alternative by directly modeling the solution curves - the flow of an ODE - with a neural network. This immediately eliminates the need for expensive numerical solvers while still maintaining the modeling capability of neural ODEs. We propose several flow architectures suitable for different applications by establishing precise conditions on when a function defines a valid flow. Apart from computational efficiency, we also provide empirical evidence of favorable generalization performance via applications in time series modeling, forecasting, and density estimation.
翻译:神经普通差分方程式描述时间值的变化。 这就是为什么它们之所以在测算连续数据时变得重要, 特别是当观测时间间隔不定期时。 在本文中,我们提出一个替代办法,通过直接模拟一个神经网络的溶液曲线, 即 ODE 流。 这立即消除了对昂贵的数字解答器的需求,同时仍然保持神经元数据模型的建模能力。 我们提出了几个适合不同应用的流程结构,为函数定义有效流规定了精确的条件。 除了计算效率外, 我们还提供了通过时间序列模型、预测和密度估计的应用实现有利通用性的经验证据 。