A privacy mechanism design problem is studied through the lens of information theory. In this work, an agent observes useful data $Y=(Y_1,...,Y_N)$ that is correlated with private data $X=(X_1,...,X_N)$ which is assumed to be also accessible by the agent. Here, we consider $K$ users where user $i$ demands a sub-vector of $Y$, denoted by $C_{i}$. The agent wishes to disclose $C_{i}$ to user $i$. Since $C_{i}$ is correlated with $X$ it can not be disclosed directly. A privacy mechanism is designed to generate disclosed data $U$ which maximizes a linear combinations of the users utilities while satisfying a bounded privacy constraint in terms of mutual information. In a similar work it has been assumed that $X_i$ is a deterministic function of $Y_i$, however in this work we let $X_i$ and $Y_i$ be arbitrarily correlated. First, an upper bound on the privacy-utility trade-off is obtained by using a specific transformation, Functional Representation Lemma and Strong Functional Representaion Lemma, then we show that the upper bound can be decomposed into $N$ parallel problems. Next, lower bounds on privacy-utility trade-off are derived using Functional Representation Lemma and Strong Functional Representaion Lemma. The upper bound is tight within a constant and the lower bounds assert that the disclosed data is independent of all $\{X_j\}_{i=1}^N$ except one which we allocate the maximum allowed leakage to it. Finally, the obtained bounds are studied in special cases.


翻译:通过信息理论的透镜来研究隐私机制设计问题。 在这项工作中, 代理人观察与私人数据X=( X_ 1 ),..., Y_ N) 美元相关的有用数据 $Y = (Y_ 1,...), Y_ N) 美元 美元, 私人数据 $X = (X_ 1,..., X_ N) 美元, 假定代理也可以访问该数据 。 这里, 我们考虑用户$ 需要 $ 的子矢量为 $Y, 以 $ C ⁇ 美元为单位。 代理人希望向用户披露 美元 。 由于 $C ⁇ i} 与 美元是不可直接披露的 $X 。 一个隐私机制旨在生成美元 披露数据 $U$, 使用户的线性组合最大化, 同时满足共同信息方面的封闭性隐私限制。 在类似工作中, 美元是 $Y_ 美元, 但是在这个工作中, 我们允许 $x_ i 美元 和 $ $ $_ 美元 。

0
下载
关闭预览

相关内容

Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
专知会员服务
25+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员