Labeling data to use for training object detectors is expensive and time consuming. Publicly available overhead datasets for object detection are labeled with image-aligned bounding boxes, object-aligned bounding boxes, or object masks, but it is not clear whether such detailed labeling is necessary. To test the idea, we developed novel single- and two-stage network architectures that use centerpoints for labeling. In this paper we show that these architectures achieve nearly equivalent performance to approaches using more detailed labeling on three overhead object detection datasets.
翻译:用于培训天体探测器的标签数据成本昂贵且耗时。 用于天体探测的公开间接数据集被贴上与图像一致的边框、目标一致的边框或对象面罩的标签, 但不清楚是否有必要如此详细标签。 为了测试这个想法, 我们开发了新型的单级和两阶段网络架构, 使用中心点进行标签。 在本文中, 我们显示这些架构在使用三个远端天体探测数据集的更详细标签方法上取得了几乎等同的业绩 。