This paper focuses on the uncertainty estimation of white matter lesions (WML) segmentation in magnetic resonance imaging (MRI). On one side, voxel-scale segmentation errors cause the erroneous delineation of the lesions; on the other side, lesion-scale detection errors lead to wrong lesion counts. Both of these factors are clinically relevant for the assessment of multiple sclerosis patients. This work aims to compare the ability of different voxel- and lesion- scale uncertainty measures to capture errors related to segmentation and lesion detection respectively. Our main contributions are (i) proposing new measures of lesion-scale uncertainty that do not utilise voxel-scale uncertainties; (ii) extending an error retention curves analysis framework for evaluation of lesion-scale uncertainty measures. Our results obtained on the multi-center testing set of 58 patients demonstrate that the proposed lesion-scale measures achieves the best performance among the analysed measures. All code implementations are provided at https://github.com/NataliiaMolch/MS_WML_uncs
翻译:本文侧重于磁共振成像(MRI)中白物质损伤分解(WML)的不确定性估计。一方面, voxel 级分解错误导致对损伤的错误分解;另一方面, 腐蚀度检测错误导致损害计数错误; 这两种因素都与评估多发性硬化病患者具有临床相关性; 这项工作旨在比较不同的 voxel 和 les- 级级级不确定措施的能力,以分别捕捉与分解和损伤检测有关的错误。 我们的主要贡献是:(一) 提出不使用 voxel 级不确定因素的分辨等级变异性新措施;(二) 扩大评估损害程度不确定措施的错误保留曲线分析框架。我们从58名病人的多点测试组获得的结果表明,拟议的损害尺度措施在所分析的措施中取得了最佳的性能。所有代码的实施见https://github.com/NataliiaMolch/MS_WML_uncs。