We consider the problem of static Bayesian inference for partially observed L\'{e}vy-process models. We develop a methodology which allows one to infer static parameters and some states of the process, without a bias from the time-discretization of the afore-mentioned L\'{e}vy process. The unbiased method is exceptionally amenable to parallel implementation and can be computationally efficient relative to competing approaches. We implement the method on S \& P 500 log-return daily data and compare it to some Markov chain Monte Carlo (MCMC) algorithm.
翻译:我们考虑了部分观察到的L\'{{e}vy-process 模型的静态贝叶斯推论问题。 我们开发了一种方法,允许人们推断静态参数和进程的某些状态,而没有偏向于上述L\'{e}vy过程的时间分解。 不带偏见的方法特别容易平行实施,并且可以与竞争性的方法相对地计算有效。 我们实施了S ⁇ P 500日志返回数据的方法,并将其与某些Markov链 Monte Carlo(MCMC)算法进行比较。