With the wide adoption of automated speech recognition (ASR) systems, it is increasingly important to test and improve ASR systems. However, collecting and executing speech test cases is usually expensive and time-consuming, motivating us to strategically prioritize speech test cases. A key question is: how to determine the ideal order of collecting and executing speech test cases to uncover more errors as early as possible? Each speech test case consists of a piece of audio and the corresponding reference text. In this work, we propose PROPHET (PRiOritizing sPeecH tEsT), a tool that predicts potential error-uncovering speech test cases only based on their reference texts. Thus, PROPHET analyzes test cases and prioritizes them without running the ASR system, which can analyze speech test cases at a large scale. We evaluate 6 different prioritization methods on 3 ASR systems and 12 datasets. Given the same testing budget, we find that our approach uncovers 12.63% more wrongly recognized words than the state-of-the-art method. We select test cases from the prioritized list to fine-tune ASR systems and analyze how our approach can improve the ASR system performance. Statistical tests show that our proposed method can bring significantly larger performance improvement to ASR systems than the existing baseline methods. Furthermore, we perform correlation analysis and confirm that fine-tuning an ASR system using a dataset, on which the model performs worse, tends to improve the performance more.


翻译:随着广泛采用自动语音识别系统(ASR),测试和改进自动语音识别系统变得日益重要。然而,收集和实施语音测试案件通常费用昂贵而且耗时费时,促使我们从战略上确定语音测试案件的优先次序。一个关键问题是:如何确定收集和实施语音测试案件的理想顺序,以便尽早发现更多的错误?每个语音测试案件都由一组音频和相应的参考文本组成。在这项工作中,我们提出PROPPHET(PRIOritiizing speecH tEST),这是一个仅根据参考文本预测潜在错误排除语音测试案件的工具。因此,PROPHET分析测试案件并将其优先排序,而不运行ASR系统,该系统可以大规模分析语音测试案件。我们评估了3个ASR系统和12个数据集的6种不同的优先排序方法。根据相同的测试预算,我们发现,我们的方法发现12.63%的识别语言比最先进的方法要错误。我们从优先清单中选择测试案件,只能根据参考文本来微调ASR系统。我们如何进行测试,并分析我们如何大大改进ASR的绩效分析方法。

0
下载
关闭预览

相关内容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系统编译器、体系结构和综合国际会议。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/conf/cases/index.html
专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
20+阅读 · 2020年6月8日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员