Educational technology innovations that have been developed based on large language models (LLMs) have shown the potential to automate the laborious process of generating and analysing textual content. While various innovations have been developed to automate a range of educational tasks (e.g., question generation, feedback provision, and essay grading), there are concerns regarding the practicality and ethicality of these innovations. Such concerns may hinder future research and the adoption of LLMs-based innovations in authentic educational contexts. To address this, we conducted a systematic literature review of 118 peer-reviewed papers published since 2017 to pinpoint the current state of research on using LLMs to automate and support educational tasks. The practical and ethical challenges of LLMs-based innovations were also identified by assessing their technological readiness, model performance, replicability, system transparency, privacy, equality, and beneficence. The findings were summarised into three recommendations for future studies, including updating existing innovations with state-of-the-art models (e.g., GPT-3), embracing the initiative of open-sourcing models/systems, and adopting a human-centred approach throughout the developmental process. These recommendations could support future research to develop practical and ethical innovations for supporting diverse educational tasks and benefiting students, teachers, and institutions.


翻译:基于大型语言模型(LLMs)开发的教育技术创新显示出自动生成和分析文本内容的潜力。虽然已经开发出各种创新来自动化多种教育任务(例如问题生成、反馈提供和论文评分),但存在对这些创新的实际性和道德性的担忧。这些担忧可能会阻碍未来研究和 LLMs 基础创新在真实教育环境中的应用。为了解决这一问题,我们对 2017 年以来发表的 118 篇同行评议论文进行了系统性文献综述,以指出使用 LLMs 自动化和支持教育任务的研究现状。通过评估技术准备度、模型性能、可复制性、系统透明度、隐私、平等和善意,还识别了基于 LLMs 创新的实际和伦理挑战。将发现总结为三项建议,包括使用最先进的模型(例如 GPT-3)更新现有的创新、接受开源模型/系统的倡议,并在整个开发过程中采用以人为中心的方法。这些建议可以支持未来研究开发实际和道德的创新,以支持各种教育任务并使学生、教师和机构受益。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
专知会员服务
123+阅读 · 2020年9月8日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
年度必读:2018最具突破性人工智能论文Top 10
机器学习算法与Python学习
11+阅读 · 2018年12月2日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月15日
Arxiv
0+阅读 · 2023年5月15日
Arxiv
18+阅读 · 2020年10月9日
Arxiv
20+阅读 · 2020年6月8日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
年度必读:2018最具突破性人工智能论文Top 10
机器学习算法与Python学习
11+阅读 · 2018年12月2日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员