Diffusion models have been shown to excel in robotic imitation learning by mastering the challenge of modeling complex distributions. However, sampling speed has traditionally not been a priority due to their popularity for image generation, limiting their application to dynamical tasks. While recent work has improved the sampling speed of diffusion-based robotic policies, they are restricted to techniques from the image generation domain. We adapt Temporally Entangled Diffusion (TEDi), a framework specific for trajectory generation, to speed up diffusion-based policies for imitation learning. We introduce TEDi Policy, with novel regimes for training and sampling, and show that it drastically improves the sampling speed while remaining performant when applied to state-of-the-art diffusion-based imitation learning policies.
翻译:暂无翻译