Cloud block storage systems support diverse types of applications in modern cloud services. Characterizing their I/O activities is critical for guiding better system designs and optimizations. In this paper, we present an in-depth comparative analysis of production cloud block storage workloads through the block-level I/O traces of billions of I/O requests collected from two production systems, Alibaba Cloud and Tencent Cloud Block Storage. We study their characteristics of load intensities, spatial patterns, and temporal patterns. We also compare the cloud block storage workloads with the notable public block-level I/O workloads from the enterprise data centers at Microsoft Research Cambridge, and identify the commonalities and differences of the three sources of traces. To this end, we provide 6 findings through the high-level analysis and 16 findings through the detailed analysis on load intensity, spatial patterns, and temporal patterns. We discuss the implications of our findings on load balancing, cache efficiency, and storage cluster management in cloud block storage systems.
翻译:云层封存系统支持现代云层服务的各种应用。确定其I/O活动的特点对于指导更好的系统设计和优化至关重要。在本文件中,我们通过从两个生产系统Alibaba Cloud和Tentent Cloud Block Cready收集的数十亿 I/O要求的区块I/O痕迹,对生产云层封存工作量进行了深入比较分析。我们研究了其负荷强度、空间模式和时间模式的特点。我们还比较了云层封存工作量与微软研究剑桥企业数据中心显著的公共I/O级I/O级工作量,并查明了三个跟踪来源的共性和差异。为此,我们通过对载荷强度、空间模式和时间模式进行详细分析,通过高级分析和16项调查结果提供了6项结论。我们讨论了我们的调查结果对云层储存系统负荷平衡、缓存效率和储存集群管理的影响。