Liu, Hong, Gu, and Lai proved if the second largest eigenvalue of the adjacency matrix of graph $G$ with minimum degree $\delta \ge 2m+2 \ge 4$ satisfies $\lambda_2(G) < \delta - \frac{2m+1}{\delta+1}$, then $G$ contains at least $m+1$ edge-disjoint spanning trees, which verified a generalization of a conjecture by Cioab\u{a} and Wong. We show this bound is essentially the best possible by constructing $d$-regular graphs $\mathcal{G}_{m,d}$ for all $d \ge 2m+2 \ge 4$ with at most $m$ edge-disjoint spanning trees and $\lambda_2(\mathcal{G}_{m,d}) < d-\frac{2m+1}{d+3}$. As a corollary, we show that a spectral inequality on graph rigidity by Cioab\u{a}, Dewar, and Gu is essentially tight.
翻译:刘、洪、郭和莱伊证明,如果以最小度表示的G$的相配基质的第二大总基值为美元=delta =ge 2m+2 +ge = 4$=$lambda_2(G) < delta -\ frac{2m+1undelta+1}$,那么$G$至少含有1美元+1美元边缘分界树,这验证了Cioab\u{a} 和 Wong 的假设。我们通过为所有美元=2m+2 +2$=G$=4美元=Ge$,我们展示了这一约束基本上是最好的办法,即为所有美元=2m+2=G$=Ge$=4Ge$,其中边缘-不相连的树木和$=lambda_2(\mathcal{Gm} < d-frac{2m+1 ⁇ d+3}绘制的平面图。我们由此可以看出,Cioab=ab{a} 和Degrognistrity的平面的不平等性基本上是紧固性。