We introduce a new class of graph neural networks (GNNs), by combining several concepts that were so far studied independently - graph kernels, attention-based networks with structural priors and more recently, efficient Transformers architectures applying small memory footprint implicit attention methods via low rank decomposition techniques. The goal of the paper is twofold. Proposed by us Graph Kernel Attention Transformers (or GKATs) are much more expressive than SOTA GNNs as capable of modeling longer-range dependencies within a single layer. Consequently, they can use more shallow architecture design. Furthermore, GKAT attention layers scale linearly rather than quadratically in the number of nodes of the input graphs, even when those graphs are dense, requiring less compute than their regular graph attention counterparts. They achieve it by applying new classes of graph kernels admitting random feature map decomposition via random walks on graphs. As a byproduct of the introduced techniques, we obtain a new class of learnable graph sketches, called graphots, compactly encoding topological graph properties as well as nodes' features. We conducted exhaustive empirical comparison of our method with nine different GNN classes on tasks ranging from motif detection through social network classification to bioinformatics challenges, showing consistent gains coming from GKATs.
翻译:我们引入了新型的图形神经网络(GNNs),方法是将一些迄今为止独立研究的概念结合起来,这些概念包括:图形内核,关注的网络,有结构前科的网络,以及最近,运用低级分解技术的小型记忆足迹的高效变异体结构,隐含着关注方法。文件的目标是双重的。我们Gag Cernel注意变异器(或GKATs)提议,它们比SONTA GNNS(能够在一个层内建模长期依赖关系)更清晰得多。因此,它们可以使用更浅的建筑设计。此外,在输入图形节点的数量中,GKAT关注层的注意层是线性,而不是四面形的。即使这些图层密度高,要求的计算能力也比普通的笔对等的注意能力要低。它们通过应用新的图表内核图类别,通过随机的图表进行随机的特征变形图解。作为引进技术的副产品,我们获得了一种新的可学习的图形素描图,叫做,缩的表层图形属性,以及近似的表层图形图表属性的图表属性属性,以及新式图表的图形图形图形图的图形图形图形图形图形图的图的图的图的图的图的图的图状图状图状的图状的图状的图状的图状的图状图状图状图状图状图状的图状的图状的图状图状的图状的图状的图状的图状的图状图状的图状的图状的图状图状图状图状图状图状图状图状图状的图状的图状图状图状图状图状图状图状图状图状图状的图状图状图状的图状的图状的图状的图状的图状的图状的图状的图状的图状的图状的图状的图状的图状的图状的图状的图状的图状的图状图状图状的图状图状的图状的图状的图状的图状的图状的图状的图状的图状的图状的图状的图状的图状图状的图状的图状的图状