A health outcome is a measurement or an observation used to capture and assess the effect of a treatment. Automatic detection of health outcomes from text would undoubtedly speed up access to evidence necessary in healthcare decision making. Prior work on outcome detection has modelled this task as either (a) a sequence labelling task, where the goal is to detect which text spans describe health outcomes or (b) a classification task, where the goal is to classify a text into a pre-defined set of categories depending on an outcome that is mentioned somewhere in that text. However, this decoupling of span detection and classification is problematic from a modelling perspective and ignores global structural correspondences between sentence-level and word-level information present in a given text. We propose a method that uses both word-level and sentence-level information to simultaneously perform outcome span detection and outcome type classification. In addition to injecting contextual information to hidden vectors, we use label attention to appropriately weight both word-level and sentence-level information. Experimental results on several benchmark datasets for health outcome detection show that our model consistently outperforms decoupled methods, reporting competitive results.


翻译:健康结果是一种测量或观测,用于收集和评估治疗的效果; 自动检测文本中的健康结果无疑会加快获得保健决策所必需的证据; 先前关于结果检测的工作将这项任务模拟为:(a) 顺序标签任务,目的是检测哪些文本跨越健康结果的描述范围,或(b) 分类任务,目标是根据文本中某个地方提到的结果,将文本分类成一套预先界定的类别;然而,从建模的角度看,跨段探测和分类有问题,忽略了某一文本中在判决一级和字一级信息之间的全球结构对应。我们建议一种方法,即使用字级和判决一级信息同时进行结果检测和结果类型分类。除了将背景信息注入隐性病媒之外,我们还使用标签,将注意力适当加权为字级和判决一级信息。 几个健康结果检测基准数据集的实验结果显示,我们的模型始终存在脱钩方法,报告竞争性结果。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
AAAI2020 图相关论文集
图与推荐
11+阅读 · 2020年7月15日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
一文读懂依存句法分析
AINLP
16+阅读 · 2019年4月28日
别说还不懂依存句法分析
人工智能头条
23+阅读 · 2019年4月8日
一文读懂命名实体识别
人工智能头条
32+阅读 · 2019年3月29日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
q-Space Novelty Detection with Variational Autoencoders
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
AAAI2020 图相关论文集
图与推荐
11+阅读 · 2020年7月15日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
一文读懂依存句法分析
AINLP
16+阅读 · 2019年4月28日
别说还不懂依存句法分析
人工智能头条
23+阅读 · 2019年4月8日
一文读懂命名实体识别
人工智能头条
32+阅读 · 2019年3月29日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员