Computer-aided systems in histopathology are often challenged by various sources of domain shift that impact the performance of these algorithms considerably. We investigated the potential of using self-supervised pre-training to overcome scanner-induced domain shifts for the downstream task of tumor segmentation. For this, we present the Barlow Triplets to learn scanner-invariant representations from a multi-scanner dataset with local image correspondences. We show that self-supervised pre-training successfully aligned different scanner representations, which, interestingly only results in a limited benefit for our downstream task. We thereby provide insights into the influence of scanner characteristics for downstream applications and contribute to a better understanding of why established self-supervised methods have not yet shown the same success on histopathology data as they have for natural images.
翻译:在组织病理学中,计算机辅助系统常常受到各种领域转移来源的挑战,这些转移影响着这些算法的性能。我们调查了利用自我监督的预先培训的可能性,以克服扫描仪引发的肿瘤分解下游任务下游工作领域转移的可能性。为此,我们向巴洛三驾马车介绍从多扫描仪数据集中学习扫描-异性表象和当地图像通信。我们显示,自监督的训练前不同扫描显示成功地对准了不同的扫描显示,令人感兴趣的是,这只能给我们下游任务带来有限的好处。我们由此深入了解扫描仪特性对下游应用的影响,并有助于更好地了解为什么已经建立的自我监督方法还没有像自然图像一样在组织病理学数据上表现出同样的成功。