This work presents the application of a recently developed parametric, non-intrusive, and multi-fidelity reduced-order modeling method on high-dimensional displacement and stress fields arising from the structural analysis of geometries that differ in the size of discretization and structural topology.The proposed approach leverages manifold alignment to fuse inconsistent field outputs from high- and low-fidelity simulations by individually projecting their solution onto a common subspace. The effectiveness of the method is demonstrated on two multi-fidelity scenarios involving the structural analysis of a benchmark wing geometry. Results show that outputs from structural simulations using incompatible grids, or related yet different topologies, are easily combined into a single predictive model, thus eliminating the need for additional pre-processing of the data. The new multi-fidelity reduced-order model achieves a relatively higher predictive accuracy at a lower computational cost when compared to a single-fidelity model.
翻译:这项工作展示了在高维位移和压力领域应用最近开发的参数、非侵入性和多纤维性减序模型方法,该方法产生于对不同离散大小和结构地形结构分析的不同地形和压力领域的结构分析。 拟议方法通过单独预测高和低纤维性模拟的解决方案,将高和低纤维性模拟的不一致外地产出结合到一个共同的子空间中来,使这些产出具有多重一致性。该方法的有效性表现在两种多纤维性假设中,包括对基准翼几何进行结构分析。结果显示,使用不相容的电网或相关的不同地形结构模拟的结果很容易合并成一个单一的预测模型,从而不再需要对数据进行额外的预处理。新的多纤维性减序模型与单一纤维性模型相比,在较低的计算成本上实现相对较高的预测准确度。