This paper proposes a clustering and merging approach for the Poisson multi-Bernoulli mixture (PMBM) filter to lower its computational complexity and make it suitable for multiple target tracking with a high number of targets. We define a measurement-driven clustering algorithm to reduce the data association problem into several subproblems, and we provide the derivation of the resulting clustered PMBM posterior density via Kullback-Leibler divergence minimisation. Furthermore, we investigate different strategies to reduce the number of single target hypotheses by approximating the posterior via merging and inter-track swapping of Bernoulli components. We evaluate the performance of the proposed algorithm on simulated tracking scenarios with more than one thousand targets.
翻译:本文建议对Poisson多-Bernoulli混合物(PMBM)过滤器采取集群和合并办法,以降低其计算复杂性,使其适合多目标跟踪,目标数量众多。我们界定了计量驱动的组合算法,将数据关联问题降低为几个子问题,我们通过 Kullback-Lebell-Lebel 差异最小化,对由此形成的组合式PMBM后方密度进行推导。此外,我们调查了不同战略,通过合并和双轨转换伯努利成分,以降低后方的近似目标假设数量。我们评估了模拟跟踪情景的拟议算法的绩效,模拟跟踪情景有1 000多个目标。