Analyzing the covariance structure of data is a fundamental task of statistics. While this task is simple for low-dimensional observations, it becomes challenging for more intricate objects, such as multivariate functions. Here, the covariance can be so complex that just saving a non-parametric estimate is impractical and structural assumptions are necessary to tame the model. One popular assumption for space-time data is separability of the covariance into purely spatial and temporal factors. In this paper, we present a new test for separability in the context of dependent functional time series. While most of the related work studies functional data in a Hilbert space of square integrable functions, we model the observations as objects in the space of continuous functions equipped with the supremum norm. We argue that this (mathematically challenging) setup enhances interpretability for users and is more in line with practical preprocessing. Our test statistic measures the maximal deviation between the estimated covariance kernel and a separable approximation. Critical values are obtained by a non-standard multiplier bootstrap for dependent data. We prove the statistical validity of our approach and demonstrate its practicability in a simulation study and a data example.
翻译:分析数据共变结构是统计的一项基本任务。 虽然这一任务对于低维观测来说简单, 但对于诸如多变量函数等更复杂的物体来说,它就变得具有挑战性。 这里, 共变可能非常复杂, 仅仅保存非参数的估计数是不切实际的, 并且为了驯化模型, 结构假设是必要的。 时空数据的一个流行假设是共变分离成纯空间和时间因素。 在本文中, 我们提出在依赖功能时间序列的背景下对分离性进行新测试。 虽然大多数相关的工作研究都研究平方函数的Hilbert空间的功能数据, 我们将这些观测作为带有高端规范的连续功能空间的物体进行模拟。 我们争辩说, 这个( 数学挑战性) 设置可以提高用户的可解释性, 更符合实际的预处理。 我们的实验统计测量测量了估计的共变内核和可调近似的近似值之间的最大偏差。 关键值是通过一个非标准的倍数制制的基岩系获得的。 我们证明我们的方法的统计有效性, 并在一个模拟中展示其数据。